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THE INTEGRATION OF ARTIFICIAL INTELLIGENCE IN SPINAL CARE
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Artificial intelligence (Al) and machine learning (ML) are driving a paradigm shift in spine surgery, augmenting surgical decision-making
with data-driven insights. This review synthesizes the current landscape of Al applications across the surgical care continuum and evaluates
its potential to enhance precision, personalization, and value. A narrative review was conducted through a critical analysis of contemporary
literature, including original research, systematic reviews, and editorials from high-impact orthopaedic and spine surgery journals. Key themes
were identified and organized to provide a coherent overview of Al's role in preoperative planning, intraoperative execution,and postoperative
economics. Al demonstrates significant utility in automating spinal imaging analysis, with convolutional neural networks enabling rapid
vertebral segmentation and accurate measurement of alignment parameters. Predictive ML models excel in forecasting individualized
patient risks, with specific algorithms outperforming surgeons in predicting complications and long-term outcomes. Intraoperatively, Al-
driven navigation and robotic systems achieve a pedicle screw placement accuracy exceeding 94% while reducing radiation exposure.
Furthermore, Al applications are emerging in health economics, effectively predicting costs and automating administrative tasks. Despite
this, various challenges continue to hinder progress, notably the black-box nature of algorithms, data bias, ethical dilemmas, and barriers to
clinical adoption.

The available evidence positions Al not as a proven superior alternative, but as a promising adjunct with proof-of-concept applications across
the spine care continuum. Al serves as a powerful adjunctive tool in spine surgery, promising to enhance procedural precision, personalize
patient care, and improve economic efficiency. While limitations regarding transparency, data diversity, and ethical frameworks must be
addressed, the ongoing development of explainable Al and robust datasets indicates a transformative future for spinal surgical practice. To
ensure safe and equitable adoption, the next steps require prospective multicenter validation,active surgeon participation in governance and
education, and global collaborations to develop diverse datasets.
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ABSTRACT

programmed for every individual scenario. The rapid expansion
of literature, technology, and clinical use makes understanding
Al/ML applications increasingly imperative in spine surgery,
where their capacity for sophisticated pattern recognition
and prediction is uniquely suited to the field’s intricate and
multifactorial nature (Figure 1)®.

The management of complex spinal pathologies, such as
adult spinal deformity (ASD), tumors, and infections, demands
the synthesis of a vast array of factors, from intricate
radiographic parameters and biomechanical considerations
to patient-specific comorbidities and goals, making surgical
decision-making a highly nuanced process, particularly for
conditions like ASD which require a holistic assessment of

INTRODUCTION

From its conceptual origins in Alan Turing’s theoretical work
of the 1950s, artificial intelligence (Al), characterized by its
capacity to emulate human intelligent behavior, has matured
into a transformative force within modern healthcare.
The foundational event was the 1956 Dartmouth College
conference, which formally established Al as a field of study.
Machine learning (ML), a core element of Al, allows systems
to learn from experience and enhance their performance
by discerning complex relationships in data, thereby
producing inferences and predictions without being explicitly
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Figure 1. Workflow of Al integration in spine surgery

This schematic illustrates the continuous, cyclical framework of Al integration across the core phases of spine surgical care. The model
is built upon a continuous learning feedback loop (grey arrow), where postoperative outcomes are used to refine and improve the Al
algorithms, creating a system that evolves with each case. Preoperative phase (blue): the process initiates with the synthesis of multifaceted
preoperative data, including medical imaging (X-Ray, CT, MRI, EOS), patient-specific variables from EHRs (comorbidities, demographics),
and PROs. This data informs the initial surgical planning. Al processing engine (central purple hub): the raw data is processed by a central
Al engine utilizing a suite of ML methodologies. These include supervised learning for predictive analytics, deep learning (e.g., CNNs) for
image segmentation and analysis, and generative Al (e.g., GANs) for data augmentation and synthetic image generation. Intraoperative
phase (green): the Al-generated surgical plan is executed with enhanced precision in the operating room.Al-driven technologies such as AR
navigation systems and robotic-assisted surgery platforms translate the preoperative plan into action, significantly improving the accuracy
of instrument placement (e.g., >94% for pedicle screws) and drastically reducing radiation exposure (e.g., by up to 90%) for the patient
and surgical team. Postoperative phase (orange): the outcomes of surgery are quantitatively measured, capturing both clinical endpoints
(e.g., complication rates, achievement of MCID in PROs) and health economic metrics (e.g., resource utilization, cost prediction, automated
medical coding). This data is the crucial output that feeds back into the system. Feedback loop (grey): postoperative outcome data is
aggregated and used to retrain the Al models in the central engine. This closed-loop system ensures continuous refinement, validation,and
improvement of the predictive algorithms and surgical planning tools, ultimately leading to progressively superior, personalized,and value-
based patient care. Al: Artificial intelligence, CT: Computed tomography, MRI: Magnetic resonance imaging, EHRs: Electronic health records,
PROs: Patient-reported outcomes, ML: Machine learning, CNNs: Convolutional neural networks, GANs: Generative adversarial networks, AR:
Augmented reality, MCID: Minimal clinically important difference,

the entire skeletal structure for comprehensive radiographic
evaluation®. While traditional statistical methods are powerful
for hypothesis testing and establishing associations in well-
understood domains with structured datasets, such as public
health, ML is better suited for generating individualized
predictions from high-dimensional data in innovative fields
like omics, radiodiagnostics, and personalized medicine. Al
and ML algorithms excel in this predictive capacity, offering
the potential to personalize care, enhance surgical precision,
improve risk stratification, and optimize resource allocation. As
emphasized by Ali et al.® technologies are driving significant
transformations in spinal surgery. Neural networks enhance the

accuracy of preoperative planning, while the use of augmented
reality refines intraoperative navigation and reduces radiation
exposure. Furthermore, postoperative predictive analytics
enable risk stratification,thereby enabling improved precisionin
surgery, optimization of clinical workflows, and personalization
of patient care.

The drive for innovation is further underscored by the
alarmingly high complication rates in complex procedures.
Effective presurgical planning must address critical patient-
specificrisk factors,such as age,body mass index (BMI),smoking,
and osteoporosis, to mitigate complications, as evidenced by
Akintlrk et al.» whose analysis of 26,207 patients revealed a
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34.5% complication rate predominantly from implant failure
(e.g., screw loosening, junctional kyphosis), neurologic deficits
(10.8%), infection (3.6%), and cardiopulmonary events (4.8%),
all of which adversely impact patient outcomes, length of stay,
and readmission rates. This stark reality necessitates moving
beyond traditional risk assessment and underscores the critical
need for tools that can optimize every phase of care, from
patient selection to postoperative management.

The proliferation of large, multi-institutional datasets,
enhanced computational resources, and advanced algorithms
are accelerating the adoption of Al in spine surgery, where
it is enhancing diagnostics, increasing surgical precision,
and enabling personalized rehabilitation through early
risk assessment and adaptive therapies, despite persistent
challenges such as data limitations and ethical considerations®.
The aim of this review is to synthesize recent literature findings
and provide a comprehensive overview of the current state of
Al in spinal surgery. It will explore the fundamental types of ML,
detail its applications in imaging, surgical planning, outcome
prediction, and health economics, and discuss the significant
ethical and practical challenges that must be addressed for its
successful integration into routine clinical practice.

MATERIALS AND METHODS

This narrative review was conducted through a synthesis of
contemporary literature identified from the provided articles,
which represent a cross-section of recent editorials, reviews,
and original research in high-impact orthopaedic and spine
surgery journals. The provided documents were systematically
analyzed to extract information on the principles of Al/ML,
specific applications in spine surgery (e.g., imaging, prediction
models, surgical techniques, health economics), and discussed
limitations.

Key themes and sub-themes were identified and organized
into logical sections to construct a coherent overview of the
field. The focus was placed on applications with direct clinical
relevance, including:

a. The use of Al for automated measurement of spinal
parameters and image segmentation.

b. The development of predictive models for surgical outcomes,
complications, and cost.

c. The integration of Al into surgical navigation, robotics, and
augmented reality systems.

d. The role of Al in health economics and value-based care.

e. The ethical and practical challenges facing implementation.
This approach offers a comprehensive, detailed analysis of Al's
current role in spinal surgery,incorporating the latest consensus
and innovations from recent literature.

RESULTS

Fundamentals of ML in Spine Surgery

ML is broadly categorized into four main paradigms: supervised
learning, which uses labeled data to map inputs to outputs
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for tasks such as classification and regression; unsupervised
learning, which identifies hidden patterns and structures in
unlabeled datathrough clustering and dimensionality reduction;
semi-supervised learning, which leverages both labeled and
unlabeled data to improve prediction accuracy when labeled
data is scarce; and reinforcement learning, which enables
an agent to learn optimal behaviors through environmental
feedback based on rewards and penalties,a method particularly
suited for complex domains such as robotics and autonomous
systems®. Understanding these paradigms is crucial for
interpreting the literature. Recent reviews have highlighted
an increasing emphasis on transparency and interpretability
in clinical settings. In this context, explainable Al (XAl) not
only provides the underlying algorithmic prediction but also
supplies explanations that offer insights into the prediction’s
reliability”. Furthermore, generative adversarial networks
(GANs), which employ two competing Al models (a generator
and a discriminator) to produce high-quality synthetic data,
are emerging as a powerful tool for medical imaging and data
augmentation (Table 1)®.
Supervised Learning: Algorithms are trained on a labeled
dataset in which the target output (e.g., “fracture” or “no
fracture®) is predefined. The model acquires the ability to
map input data to their correct labels and is later evaluated
on unlabeled datasets to assess its performance. Common
supervised models include:
Decision Trees (DT) and Random Forests (RF): These models
use a tree-like structure of decisions (e.g., “Is the posterior
ligamentous complex intact?”) to reach an outcome (e.g.,
“stable” or “unstable”). RF is an ensemble learning technique
that operates by constructing a multitude of DT. This approach
improves overall accuracy and mitigates the danger of
overfitting, which is common in single DT. They are highly
interpretable and have been used for risk stratification and
classification, such as the AOSpine fracture classification, need
of blood transfusion, preoperative planning/selection, patient
type clustering, adverse events and serious complications®?),
Support Vector Machines (SVM): SVMs are a supervised learning
model used for classification, regression, and outlier detection.
Their mechanism involves finding the mathematically optimal
decision boundary (hyperplane) that maximizes the margin
between different classes in a high-dimensional feature space.
These models demonstrate particular efficacy in image-based
diagnostic and prognostic tasks, including the classification of
disc degeneration and scoliosis types, the automated detection
and localization of lumbar spine and vertebral compression
fractures, and the prediction of postoperative outcomes®0,
Unsupervised Learning: Algorithms process unlabeled
datasets autonomously without human guidance, discovering
hidden patterns or intrinsic structures. A common application
is clustering patients into novel subgroups based on a
combination of clinical and radiographic features, which may
predict distinct outcomes or complication profiles®V,
Artificial Neural Networks (ANN) and Deep Learning
(DL): ANNs are composed of layered, interconnected nodes
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Table 1. ML paradigms and algorithms in spine surgery research

Paradigm/concept

Key idea

Common algorithms

Clinical relevance and examples

Supervised learning

Learns a function that maps inputs
to outputs using a labeled dataset
for tasks like classification and
regression.

DT, RF, SVM, linear/
logistic regression,
neural networks

Classification and risk stratification: RF/DT

for AOSpine fracture classification (stable/
unstable), predicting need for blood transfusion,
adverse events, and serious complications.
SVMs for image-based tasks like classifying
disc degeneration, scoliosis types, and detecting
lumbar spine or vertebral compression
fractures.

Unsupervised
learning

Identifies hidden patterns and
intrinsic structures within unlabeled
data through clustering and
dimensionality reduction.

K-means clustering,
hierarchical clustering,
principal component
analysis, autoencoders

Patient phenotyping: clustering patients into
novel subgroups based on clinical/radiographic
features to predict distinct outcomes or
complication profiles.

Semi-supervised
learning

Leverages both labeled and
unlabeled data to improve
predictive accuracy where labeled
data is scarce.

Label propagation,
self-training,
generative models

Data augmentation: overcoming annotation
scarcity; e.g.,a 2.5D U-Net framework with
a cascade design and level set function for
precise vertebral segmentation, including
fractures.

Reinforcement
learning

An agent learns optimal behaviors
through environmental feedback
based on rewards and penalties,
suitable for complex domains.

QO-learning, deep
Q-networks, policy
gradient methods

Robotic surgery: autonomous surgical planning;
e.g., SafeRPlan, a DRL approach for pedicle
screw placement that achieves >5% higher
safety rates under noise.

Deep learning
(specialized
architectures)

A subset of ML using multi-
layered networks to learn complex,
hierarchical data representations,
often applied in a supervised

CNN, recurrent neural
networks, transformers

Medical image analysis and prognostics: CNNs
are used for vertebral segmentation, automated
Cobb angle measurement, fracture detection,
and prognostic modeling (e.g., forecasting
postoperative outcomes, relapse after

manner.

discectomy, mortality rates, and readmissions/
reoperations) to aid preoperative planning.

A suite of techniques designed to
make the predictions of complex

SHAP, LIME, attention

Clinical adoption: providing surgeons with a
rationale for a model’s prediction of surgical

il “black box” models transparent and  mechanisms risk or diagnosis to foster trust and facilitate
interpretable to humans. integration into care.
Aamen LSOOI e culuional  ALKEETS Gt st genratng e
GANSs GANs, StyleGAN, et

discriminator) to produce high-
quality synthetic data instances.

CycleGAN

augment training datasets and protect patient
privacy.

This table outlines key ML paradigms and Al concepts in spine surgery research, categorizing them by principle, common algorithms, and clinical
applications. It demonstrates how these technologies advance diagnostic precision, data-driven planning, and personalized care. ML: Machine learning,
Al: Artificial intelligence, DT: Decision trees, RF: Random forests, SVM: Support vector machines, DRL: Deep reinforcement learning, CNN: Convolutional
neural networks, XAl: Explainable artificial intelligence, SHAP: SHapley additive exPlanations, LIME: Local interpretable model-agnostic explanations,
GAN: Generative adversarial networks, CT: Computed tomography, MRI: Magnetic resonance imaging

(neurons) designed to process input data, mirroring the
structure and function of the human brain. DL refers to
ANNs with many hidden layers, capable of learning complex,
hierarchical representations of data. A specialized type of
ANN, the convolutional neural network (CNN), is particularly
powerful for image processing. Inspired by the visual cortex,
CNNs are adept at processing pixel data and are the backbone
of most modern medical imaging Al applications,from vertebral
segmentation to automated Cobb angle measurement®2.Beyond
image analysis, CNNs are increasingly employed for advanced
prognostic modeling, demonstrating strong predictive utility in
forecasting favorable postoperative outcomes, estimating the
risk of relapse following discectomy, the diagnosis of cervical
myelopathy, calculating mortality rates after surgery for spinal

epidural abscess, and predicting probabilities of readmission
or reoperation after posterior lumbar interlaminar fusion,
thereby directly informing preoperative planning and surgical
candidate selection, particularly in complex cases®.

Semi-supervised Learning: To overcome the scarcity of
annotated fracture data in spinal computed tomography (CT)
segmentation, Pan et al.*® developed a semi-supervised 2.5D
U-Net framework that leverages both labeled and unlabeled
datasets. Their approach incorporates a cascade design aligned
with clinical workflows to enhance segmentation precision
across vertebrae. In addressing computational constraints,
Huang et al.®¥ strategically employed 2D network training
supplemented with 2.5D inputs to optimize performance. The
model utilizes a dual-branch encoder with multi-scale Swin
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Transformer modules for improved feature extraction and
introduces a level set function to ensure consistency between
pixel classification and geometric regularization. This method
demonstrates strong performance across evaluation metrics,
highlighting the efficacy of semi-supervised learning and
advanced architectural designs in medical image segmentation.
In a separate clinical prediction task, Park et al.** evaluated
several supervised ML algorithms to forecast whether patients
with cervical spondylotic myelopathy would achieve a minimum
clinically important difference (MCID) in neck pain following
surgery. They emphasized that model selection should be
guided by dataset characteristics and the specific clinical
question. For their balanced dataset, precision was identified
as the most relevant metric to optimize the identification of
true MCID achievers. Logistic regression achieved the highest
precision across both short- and long-term follow-up intervals,
demonstrating consistent superiority among the tested models
and reaffirming its utility for clinical classification problems.
Reinforcement Learning: In their study, Ao et al.t® introduce
SafeRPlan, a safety-aware deep reinforcement learning
approach for autonomous pedicle screw placement in robotic
spine surgery. This method incorporates an uncertainty-
aware safety filter to ensure safe actions, uses pre-trained
neural networks to compensate for incomplete intraoperative
anatomical information, and employs domain randomization
to improve generalization under noise. Experimental results
demonstrated that SafeRPlan achieved over 5% higher safety
rates compared to baseline methods, even under realistic
surgical conditions.

XAl: As Al models, particularly complex DL systems, become
more integral to clinical decision-making, the demand for
transparency and interpretability has surged. XAl refers to a
suite of techniques designed to make the predictions of these
“black box” models understandable to human experts. This is
achieved by providing insights into the model’s confidence,
highlighting the features most influential to a decision (e.g.,
specific image regions in a CT scan),and generating a rationale
for its output. In spine surgery, XAl is critical for fostering
clinical trust and facilitating adoption, as it allows surgeons
to validate an Al's recommendation for fracture classification,
surgical planning, or risk prediction before integrating it into
patient care”.

GANs: GANs represent a category of DL frameworks wherein
two neural networks operate in opposition, a generator that
produces synthetic data instances, and a discriminator that
distinguishes between authentic and generated data. Through
this iterative competition, the system progressively improves
its ability to generate convincingly realistic synthetic outputs.
In medical imaging, GANs address the critical challenge of
data scarcity and privacy by creating high-quality synthetic
spine CT or magnetic resonance imaging (MRI) images®. These
generated datasets can be used to augment limited training
data, improving model robustness and generalizability, or to
create anonymized data for research without compromising
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patient confidentiality. Applications include data augmentation
for segmentation models and simulating anatomical variations
for training purposes®”.

Applications in Spinal Imaging and Diagnostics

Al has made significant strides in automating and enhancing
the interpretation of spinal images, reducing inter-observer
variability and surgeon workload.

Automated Vertebral Segmentation and Identification: CNNs
form a fundamental framework for diagnostic and therapeutic
planning by allowing highly accurate, automated detection and
localization of vertebrae in various imaging modalities such
as X-Ray, CT, MRI, and ultrasound. These systems significantly
outperform manual methods in consistency and precision,
reducing the mean absolute error in Cobb angle measurements
to less than 3° compared to manual variability of 2.8°-8°. Al-
based approaches also demonstrate robustness in analyzing
spinal curvature from suboptimal images, such as off-center,
angulated, or smartphone-captured images, and support
radiation-free scoliosis screening via ultrasound through
automatic extraction of anatomical landmarks for 3D spinal
reconstruction. Additional applications include quantitative
assessment of thoracolumbar compression fractures to inform
clinical management®®. This is crucial for surgical navigation
systems, as it allows for automatic registration of the patient’s
anatomy to preoperative images, facilitating the planning
of pedicle screw trajectories. Burstrom et al."? created an
automated spine segmentation algorithm for this purpose,
based on 3D reconstructions obtained from cone-beam CT.
Classification of Pathology: ML algorithms excel at classifying
spinal pathologies through medical imaging analysis,
demonstrating particular strength in automatically grading
intervertebral disc degeneration according to standardized
systems such as Pfirrmann classification, with CNNs achieving
remarkable agreement (up to 95.6%) with expert radiologists®??.
These techniques have been successfully extended to identify
various spinal conditions including stenosis, fractures,
sacroileitis, and tumors. For neural compression pathologies,
Al systems analyze morphological features to diagnose disc
herniation and nerve root compression with high accuracy and
exceptional reliability®'-?». Additionally, Al models demonstrate
sophisticated diagnostic capabilities in distinguishing benign
from malignant vertebral fractures on CT scans, matching or
surpassing radiology residents’ performance, and in grading
metastatic spinal cord compression by precisely delineating
margins of involvement®?.

Automated Measurement of Radiographic Parameters: Al
enables automated measurement of key spinopelvic
parameters, including coronal and sagittal vertical axes,as well
as key sagittal alignments such as thoracic kyphosis, lumbar
lordosis, and the pelvic parameters of incidence, tilt,and sacral
slope, from standing whole-spine radiographs. These Al-
derived measurements demonstrate excellent agreement with
expert surgical assessments, achieving intraclass correlation
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coefficients exceeding 0.90 and mean absolute errors below 3°
or 3 mm, thereby providing a rapid and reliable alternative to
manual methods®?.

Generative Al for Enhanced Imaging: Recent advances have
introduced the use of GANs for anatomical image reconstruction.
Santilli et. al.?9 developed a publicly available GAN model that
generates synthetic STIR sequences of the lumbar spine from
standard T1- and T2-weighted MRI scans. Expert radiologists
assessed these synthetic datasets and judged them to be
of comparable or superior quality in approximately 77% of
cases, underscoring their potential to streamline and improve
imaging workflows for preoperative evaluation. Importantly,the
generated images were shown to be diagnostically equivalent
to conventional acquisitions while demonstrating superior
overall image quality, supporting their possible integration into
routine clinical practice.

Predictive Modeling for Surgical Outcomes and Complications

Al enables personalized risk stratification and outcome
prediction in spine surgery, advancing the field toward truly
individualized patient care (Table 2)©.

The potential of Al is not merely theoretical but now
demonstrates tangible superiority in specific domains. A
compelling example lies in outcome prediction, where an
algorithm developed by the International Spine Study Group
demonstrated 89% accuracy in forecasting risks. This stands in
stark contrast to a study of 39 experienced deformity surgeons,
whose predictions for the same set of cases were highly
discordant and inconsistent, with estimates for complication
rates ranging from 0% to 100%. This highlights the inherent

limitations of human cognition when processing multivariate
data and the confounding role of emotional bias, where a
recent negative outcome can unconsciously skew a surgeon’s
prediction for a subsequent, similar patient. This concept is
further explored by Martin and Bono®”, who note that while
traditional regression techniques are well-suited for assessing
causation, they are poorly optimized for prediction, a gap that
ML specifically aims to fill.

Predicting Complications: ML models have been developed
to predict a wide range of complications with high accuracy.
These include:

Reoperation and Major Complications: ML algorithms
synthesize high-dimensional data from clinical, imaging, and
patient sources to produce personalized risk assessments and
predictions for surgical results. For instance, Scheer et al.®)
developed a model predicting major complications after ASD
surgery with 87.6% accuracy, while Pellisé et al.?® employed
random forest models trained on more than 100 variables
to forecast major complications, reoperations, and hospital
readmissions, with model performance yielding area under the
curve (AUC) scores between 0.67 and 0.92. Building upon this,
sophisticated ML techniques, including LightGBM and RF, have
been leveraged to generate probabilistic forecasts for ideal
surgical outcomes. These are defined as a clinically significant
enhancement in quality of life without major complications,
achieved by incorporating modifiable risk factors into their
analytical architecture.

Proximal Junctional Kyphosis/Failure (PJK/PJF): Al and ML
models hold considerable promise for predicting PJK and
PJF after ASD surgery, with some studies reporting prediction

Table 2. Al for predictive modeling of surgical outcomes and complications in spine surgery

Prediction category Specific target

Reported performance/key finding

General complications o
readmission

Major complications, reoperation,

87.6% accuracy; AUC: 0.67-0.92 for various outcomes;
forecasts “ideal outcome” (QoL improvement without
complications)

Mechanical complications PJK/PJF pseudarthrosis

Up to 86% accuracy; AUC: 0.89
91% accuracy; AUC: 0.94; identifies adipose tissue biomarkers

Surgical site infection Postoperative infection

93% positive predictive value; identifies key predictors
(modic changes, glucose, etc.)

Other clinical outcomes

Transfusion, length of stay, opioid use

Predictive capability demonstrated

Patient-reported outcomes MCID on SRS-22, QALYs

Models probability of achieving MCID; predicts QALYs gained;
external validation performed

Risk stratification Novel ASD classifications

Creates patient clusters with distinct risk/PROMs profiles for
better selection and counseling

Upper instrumented vertebra

=izl AL selection, PJK prevention

87.5% accuracy in UIV selection; optimizes surgical angles

Economic outcomes

Catastrophic costs, financial outliers

Identifies high-cost patients (>$100k); AUC: 0.845-0.883 for
cost outliers; $469k saved from scheduling Al

This table demonstrates how Al shifts spine surgery from subjective assessment to quantitative, data-driven prediction, achieving high accuracy in
forecasting both clinical outcomes and economic value. These models enhance surgical precision and advance value-based care through personalized
risk stratification. Al: Artificial intelligence, AUC: Area under the curve, QoL: Quality-of-life, PJK: Proximal junctional kyphosis, PJF: Proximal junctional
failure, MCID: Minimum clinically important difference, SRS-22: Scoliosis research society-22 questionnaire, QALYs: Quality-adjusted life year, ASD: Adult
spinal deformity, PROMs: Patient-reported outcomes measures, UIV: Upper instrumented vertebra



Oztiirk et al. Artificial Intelligence in Spinal Care
J Turk Spinal Surg 2026;37(Suppl 1):49-59

accuracies as high as 86%. For instance, research by Lee et
al.t% and Ryu et al.®? has shown that random forest models
deliver notably high accuracy and AUC values in forecasting
PJK/PJF occurrence and pinpointing major reoperation
risk factors. Nevertheless, Tretiakov et al.?? note a critical
limitation: although powerful, RF models may overestimate
target outcomes in binary classification tasks due to elevated
out-of-bag error, underscoring the importance of transparency
and rigorous methodology in predictive modeling.
Pseudarthrosis: Recent advances in ML demonstrate strong
predictive capabilities for postoperative complications in
spine surgery. Johnson et al.®® identified adipose tissue
features on MRI as potential biomarkers for pseudarthrosis
risk, independent of BMI. Further advancing this domain,
Scheer et al.®% devised ensemble decision tree-based models
capable of predicting PJK/PJF with 86% accuracy (AUC:
0.89) and pseudarthrosis with 91% accuracy (AUC: 0.94) in
a multicenter ASD patient population. Similarly, a separate
model for predicting pseudarthrosis at 2-year follow-up after
ASD surgery demonstrated 91% accuracy®. Complementary to
these approaches,Wang et al.*® developed a nomogram model
showing clinical utility for predicting pseudarthrosis probability,
highlighting the growing sophistication of Al-driven prognostic
tools in spinal surgery outcomes.

Surgical Site Infection (SSI): Al demonstrates promising
capabilities in predicting SSI risk following spinal procedures.
While a systematic review by Ndjonko et al.?” noted that Al
models show potential for excellent classification accuracy
in predicting spinal SSI, the authors caution that most
studies remain in early developmental stages, and reported
performance metrics should be interpreted with appropriate
scrutiny.

Other Outcomes: Models also predict transfusion requirements,
length of hospital stay,and prolonged opioid use®.

Predicting Patient-reported Outcomes Measures (PROMs): Al is
increasingly used to predict PROMs following spine surgery,with
common targets including the modified Japanese Orthopaedic
Association score for cervical, Oswestry disability index for
lumbar, and scoliosis research society-22 questionnaire (SRS-
22) for deformity pathologies, alongside pain assessments like
visual analog scale and numeric rating scale. Predictive models
incorporate diverse features ranging from demographics
and surgical characteristics to preoperative PROMs, imaging
findings, and psychosocial factors. Research by Ames et al.®®
and Oh et al.*® demonstrates MLs capability to forecast quality-
of-life improvements, such as achieving MCID on SRS-22 or
predicting quality-adjusted life years (QALYs). A significant
challenge remains the lack of PROM standardization, which
complicates comparison across studies and limits consensus
on optimal implementation.

Risk Stratification and Surgical Planning: Al significantly
enhances risk stratification and surgical planning in spine care.
Unsupervised learning models analyze hundreds of variables
to create novel ASD classification systems, predicting distinct
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risk profiles and patient-reported outcomes to improve
preoperative counseling and patient selection. For surgical
planning, algorithms automate critical decisions, such as
selecting the upper instrumented vertebra with 87.5% accuracy
or optimizing the proximal junctional angle to prevent
mechanical complications®“?,

Al-enhanced Surgical Techniques: Navigation, Robotics, and
Augmented Reality

Al is the engine behind several advanced intraoperative
technologies that are increasing surgical precision and safety.

Augmented Reality Surgical Navigation (ARSN): ARSN systems,
use CNN-based segmentation of intraoperative 3D cone-
beam CT images. The system then projects the preoperatively
planned screw trajectories directly onto the patient’s anatomy
via a headset or display, creating an “X-ray vision” effect. This
approach has been demonstrated to increase the accuracy
of percutaneous pedicle screw placement to over 94%,
while significantly reducing radiation exposure compared
to conventional fluoroscopy*Y. Recent innovations include
marker-less registration that uses deep neural networks
to autonomously identify spinal structures and determine
their positional configuration in real-time, yielding a median
angulation error of 1.6° with a translational error of 2.3 mm at
the screw entry site,all without the time and radiation exposure
of traditional methods“?.

Robotics: Robotic-assisted spine surgery systems rely on Al
algorithms for planning and executing screw placement. The
robotic arm guides the surgeon to the pre-planned trajectory
based on intraoperative imaging. Studies report optimal
placement rates exceeding 97-98%, comparable to the best
results achieved with navigation. The robot adds a layer of
precision and eliminates human tremor, standardizing a key
step of the procedure. A significant learning curve exists;
success rates improve and conversions to manual placement
decrease with increased surgeon experience®?,

The integration of Al into preoperative planning is becoming
increasingly seamless and accessible. Emerging platforms
now allow surgeons to upload radiographic images via mobile
applications, where algorithms automatically perform all
necessary measurements and synthesize relevant risk variables
to generate a patient-specific surgical plan. The efficacy of such
tools is significant; they have been shown to reduce the risk
of critical complications like implant failure and rod breakage
following osteotomy from historical rates of up to 22% down to
4.7%, representing a monumental improvement in procedural
safety and reliability™®.

Al in Health Economics and Value-based Care

Al advances value-based spine surgery through three core
mechanisms: enhancing patient agency via improved health
literacy and remote monitoring, automating administrative
and operational tasks to reduce costs, and augmenting clinical
decision-making through precise diagnostics, surgical planning,
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and outcome prediction.Despite its potential,Al implementation
faces significant challenges including professional resistance,
data quality and privacy concerns, and substantial financial
investment in infrastructure®,

Predicting Costand Resource Utilization:MLmodels demonstrate
significant capability in predicting financial outcomes in spine
surgery. Karnuta et al.“® implemented a Naive Bayes algorithm
that accurately predicts perioperative outcomes, including
hospitalization costs, duration of admission, and discharge
destination for patients undergoing lumbar fusion procedures,
demonstrating good-to-excellent predictive reliability.
Cost-effectiveness Analysis: Al enables sophisticated cost-
effectiveness analysis for spine surgery by integrating
predictions of QALYs gained with cost projections, creating a
robust framework for evaluating economic value beyond mere
procedural expenses. Robotic spine surgery demonstrates cost-
effectiveness through reduced revision rates, lower infections,
decreased length of stay,and shorter operative times.
Operational Efficiency: Al extends its economic impact
beyond the operating room into hospital administration,
where algorithms can automatically extract billing codes
from operative notes with approximately 90% accuracy,
reducing financial losses from human coding errors and
streamlining healthcare economic infrastructure. Clinically,
Al enhances surgical precision through personalized
interventions, particularly in scoliosis treatment where analysis
of preoperative imagery helps determine the optimal level of
surgical intervention tailored to individual patient needs.

DISCUSSION

The adoption of Al in spinal surgery signifies a fundamental
transformation, providing new tools to improve care across
all stages, including diagnosis, preoperative planning,
intraoperative guidance,postoperative management,and health
economic analysis. The evidence presented demonstrates that
Al is moving from a research curiosity to a tangible clinical tool
with validated applications in imaging, prediction, execution,
and health economics.

The ability of ML models to analyze vast, complex datasets
allows a more nuanced understanding of diseases like ASD.
Traditional classification systems are being supplemented by
data-driven clustering models that can identify patient subtypes
with unique outcome profiles, enabling more personalized
and effective treatment strategies. Predictive models for
complications and PROMs empower surgeons to conduct
detailed risk-benefit analyses with patients, setting realistic
expectations and potentially avoiding high-risk surgeries in
those unlikely to benefit®3>9),

In the operating room, Al-driven navigation and robotics are
mitigating human error and elevating the level of precision to
new heights. The high accuracy rates of percutaneous screw
placement with ARSN and robotics promise to improve patient
safety and reduce revision rates“*#%, Furthermore, the reduction

in fluoroscopy time benefits both the patient and the surgical
team. Recent advancements, such as marker-less registration
and machine-vision systems, are pushing this further, reducing
radiation exposure by up to 90% and significantly cutting down
procedural time®?,

Perhaps most critically for the future sustainability of spine
care, Al provides tools for navigating the shift to value-based
care. By predicting both outcomes and costs, Al enables a
more sophisticated approach to resource allocation and
reimbursement, ensuring that interventions are not only
clinically effective but also economically viable®”,

However, the path to widespread adoption is fraught
with challenges that the spine community must address
conscientiously, many of which are underscored in the latest
literature (Table 3)®2):

The “Black Box” Problem and the Need for XAl: The complexity
of some DL models can make it difficult to understand how
a specific prediction was made, which can erode clinician
trust. Efforts to improve model interpretability through XAl are
therefore not just a technical necessity but a cornerstone for
building trust and facilitating ethical clinical adoption.

Data Bias and Equity: If training data is not representative of
the broader population (e.g., lacking diversity in race, ethnicity,
or socioeconomic status), algorithms can perpetuate and
even amplify existing healthcare disparities. Vigilant curation
of diverse datasets is essential. Chen et al.*®¥ pointed to the
challenge of limited dataset diversity, which adversely affects
the external validity and generalizability of Al-based systems.
Data Privacy and Security: The implementation of such systems
necessitates access to vast quantities of sensitive patient
health information. Ensuring stringent cybersecurity protocols
and strict compliance with data governance regulations, such
as the general data protection regulation and health insurance
portability and accountability act, is essential.

Validation and Generalizability: Most models are developed
and validated on retrospective data from single or limited
institutions. Broader external validation in diverse, real-
world settings is essential before they can be relied upon for
routine clinical decision-making. Mandate external validation
in independent cohorts before clinical implementation.
Emerging techniques, such as federated learning frameworks,
enable continuous validation and model refinement across
institutions while preserving data privacy and addressing the
central challenge of data heterogeneity.

Clinical Integration and Workflow: Integrating these tools
seamlessly into clinical workflows, perhaps through electronic
health records systems (EHR) using standards like substitutable
medical applications, reusable technologies on fast healthcare
interoperability resources, is another significant hurdle that
must be overcome to avoid adding to clinician burden®, This
is particularly relevant given the spine surgery community’s
historical reluctance to adopt new technologies that are
perceived to disrupt established workflows or offer unclear
cost-benefit advantages.
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Table 3. Challenges and proposed mitigations for Al in spine surgery
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Challenge

Description

Potential mitigation strategies

“Black box” problem

Lack of transparency in how complex
models make decisions.

Develop and use interpretable ML models; invest in XAl
research.

Data bias and homogeneity

Models trained on non-representative
data perpetuate disparities and lack
generalizability.

Curate diverse, multi-institutional datasets; implement
algorithmic fairness audits.

Privacy and security

Risk of breaching sensitive patient health
information.

Implement robust encryption; adhere strictly to data
protection regulations (GDPR, HIPAA).

External validation

Models may not perform well outside
their original dataset.

Mandate external validation in independent cohorts
before clinical implementation. Emerging techniques,
such as federated learning frameworks, enable
continuous validation across institutions while preserving
data privacy.

Clinical integration and
adoption

Al tools may disrupt workflows; spine
surgeons are historically late adopters.

Co-design tools with surgeons; integrate with EHRs via
standards like SMART on FHIR.

Unclear who is responsible when an Al

Establish clear guidelines for human oversight and

Ethical/legal liability system errs

accountability; update regulatory frameworks.

De-skilling skills

Over-reliance on Al could erode surgical

Frame Al as a decision-support tool; maintain emphasis
on core surgical training.

Emotional bias in humans

Human predictions are influenced by
recent experiences and emotions.

Utilize Al as an objective, data-driven second opinion to
mitigate cognitive bias.

This table outlines key implementation challenges for Al in spine surgery, such as the “black box” problem and data bias, alongside proposed mitigation
strategies like explainable Al. It provides a balanced perspective on translating algorithmic potential into safe and equitable clinical practice. Al:
Artificial intelligence, ML: Machine learning, XAl: Explainable artificial intelligence, GDPR: General data protection regulation, HIPAA: Health insurance
portability and accountability act, EHRs: Electronic health records, SMART: Substitutable medical applications, reusable technologies, FHIR: Fast

healthcare interoperability resources

Ethical and Legal Liability: The issue of liability arising from
errors produced by Al systems, such as a diagnostic error by a
CNN, remains legally and ethically unresolved. A framework for
human oversight and liability must be established.
De-skilling: There is a concern that over-reliance on Al
could lead to the erosion of fundamental surgical skills and
clinical acumen among surgeons®?, Al must be viewed as an
augmentative tool, not a replacement for expertise.

Human Factors and Emotional Bias: Beyond processing power,
Al systems offer a unique advantage: freedom from cognitive
and emotional bias. Al algorithms,devoid of emotional feedback
loops, provide consistent, objective predictions based solely on
the empirical data of thousands of historical cases, plotting a
patient’s risk on a precise curve rather than a wide, subjective
range.

Limitations and Challenges

The adoption of Al technologies in spine surgery continues
to encounter substantial implementation barriers, including
the “black box” nature of complex algorithms, which may
undermine clinical trust; limited generalizability due to data
bias and homogeneity; unresolved ethical and legal concerns
regarding privacy, security, and liability; and practical barriers
to workflow integration and potential de-skilling. The historical
reluctance of spine surgeons to adopt disruptive technologies
further complicates implementation. As a narrative review, this

study offers a valuable qualitative synthesis but is inherently
susceptible to selection bias. Greater transparency regarding
the literature search strategy and inclusion criteria would
enhance reproducibility. While the review is well-structured
and supported by effective tables and figures, the technical
descriptions of MLarchitectures (e.g.,CNNs,GANs) maychallenge
clinicians without a data science background. Incorporating
a glossary or expanded contextual definitions could improve
accessibility without compromising technical depth. The review
thoroughly identifies adoption barriers but would benefit from
discussing actionable solutions. Concrete strategies, such as
interoperability standards for EHR integration, structured Al
training programs for surgeons, and guidance on regulatory
compliance, would provide a more practical roadmap for
translating Al technologies into clinical practice.

Future Directions

Looking ahead, the role of Al in spinal procedures will probably
see a more advanced and seamless integration throughout the
care pathway. Current investigations are increasingly directed
toward refining intraoperative techniques through real-time
feedback, forecasting the most effective surgical strategies,
and suggesting customized implants tailored to individual
anatomical requirements. The development and adoption of
XAl will be paramount to building trust and understanding
model decisions. Furthermore, the use of generative Al, like
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GANs, for creating synthetic data to augment limited datasets
is a promising frontier to combat data bias. The creation of
large, diverse, multi-institutional datasets and open-access
web applications that integrate ML predictions directly into the
clinical workflow represent the next critical steps toward the
equitable and practical point-of-care use of Al. For this future to
be realized, the spine surgery community must actively engage
in the development, validation,and ethical governance of these
powerful tools. The journey has just begun, but the fusion of
human expertise and Al marks the dawn of a new, more precise,
and value-driven era in spine care.

CONCLUSION

Al is steadily transforming spine surgery, shifting practice from
an experience-driven discipline toward one that is increasingly
supported by objective, data-based insights. Applications in
imaging, risk prediction, navigation, robotics, and economic
modeling already illustrate how Al can refine precision, tailor
treatment,and streamline workflows. Rather than replacing the
surgeon, these tools should be understood as complementary,
providing consistency and augmenting clinical judgment. For
this transformation to progress responsibly, several priorities
must be addressed. First, prospective multicenter trials are
needed to validate algorithms in everyday clinical environments
and across heterogeneous patient groups. Second, active
involvement of spine surgeons in Al development and
governance will ensure clinical relevance, accountability, and
ethical oversight. Third, international cooperation to establish
large, diverse datasets is essential to reduce bias and guarantee
that innovations benefit patients globally rather than
selectively. By combining rigorous validation with professional
leadership and collaborative data sharing, Al can move beyond
experimental promise to become a trusted partner in surgical
care. This integration offers a pathway toward more precise,
equitable, and value-driven spine surgery in the years ahead.
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